

Soirée des doctorants

Thèmes : Flexibilité des réseaux de distribution, réseaux à courant continu et intégration des véhicules électriques

Le bureau français de l'IEEE PES vous convie à la soirée annuelle des doctorants, au cours de laquelle les trois lauréats du prix de l'année, viendront présenter leurs travaux. Nous leur donnerons la parole sur trois thèmes différents. Les exposés seront introduits par les responsables industriels concernés qui viendront expliciter les enjeux des travaux présentés.

Emmanuelle Vanet présentera ses <u>travaux</u> sur la gestion opérationnelle des ressources de flexibilité dans les réseaux de distribution, incluant les générateurs d'énergie décentralisés.

Julian Freytes développera ensuite son approche de l'analyse de l'interopérabilité des stations de conversion AC-DC de différents constructeurs installés sur un même réseau en courant continu.

Paul Codani exposera son approche de l'intégration des véhicules électriques au réseau, partant des contraintes techniques jusqu'au modèle d'affaire.

Organisation et Parrainage

- Chapitre français de l'IEEE PES (Power & Energy Society)
- Avec l'appui de la SEE (Société de l'Electricité, de l'Electronique et des Technologies de l'Information et de la Communication) – Club technique « Systèmes électriques »

Lieu

RTE - <u>Tour Initiale</u> **1, terrasse Bellini, Paris - La Défense** Métro ligne 1– Station : Esplanade de la Défense Plan : <u>http://bit.ly/1iZ39Jy</u>

Mardi 16 Mai 2017 de 17h30 à 19h30

RTE - Tour Initiale – 1, terrasse Bellini Paris - La Défense

17h30 Accueil et introduction

Sébastien Henry, *Président du bureau français de l'IEEE PES, Directeur SI & Télécommunications, RTE*

17h40 Distribution de l'intelligence et approche hétérarchique des marchés de l'énergie distribués dans les Smart Grids

> Emmanuelle Vanet (G2Elab, Grenoble-INP), introduction par Mathieu Gabel (Electricité de Strasbourg Réseaux) et Romain Gigault (GE Grid Solutions)

18h15 Interoperability between different Modular Multilevel Converters connected to a MTDC grid Julian Freytes (L2EP, Ecole Centrale

de Lille), introduction par RTE (A confirmer)

18h50 Grid Integrated Vehicles: business models and technical constraints for car manufacturers Paul Codani (Centrale Supelec), introduction par Damien-Pierre Sainflou (PSA)

19h30 Pot de l'amitié

Inscription et Renseignements

Après la soirée, les présentations sont disponibles sur <u>http://ewh.ieee.org/r8/france/pes/</u>

Flexibility of Distribution Grid used in Transport Grid

IEEE Power & Energy Society : Soirée des doctorants Introduction de la présentation d'Emmanuelle VANET

Romain GIGAULT June 9, 2017

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Ancillary Services Market – Case of **Terna** Italy

Ancillary Services Market products: aFRR, mFRR and RR

Unit commitment/re-dispatch coupling the market clearing engine with a contingency analysis to generate network security-related constraints

Heavily constrained network due to its topology:

• Necessary commitment of specific production units needed in service for particular conditions.

Voltage control support during low-load conditions.

Congestion control in lower kV grids.

Large renewable capacity...

18,610 MW solar power installed and 9,080 MW wind power installed [2015].

... integrated in the ancillary services market

- RES connected to high, medium and low kV grid provide system services to TSO.
- RES submit offers directly to TSO or alternatively traders aggregate RES offers.
- Small RES and aggregator flexibility offers (< 1 MW) are available to the market.

3 470

2005 2006 2007 2008 2009 2010 2011 2012 2013

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Nice Grid > Microgrid Demonstrator.

Challenges addressed

Integration of renewables (**PV**) in the distribution grid, leading to **backfeed and voltage issues**.

Congestion or voltage issues **in the transmission grid**; Overload during outages in distribution grid

Islanding of a LV grid using batteries and PV

Solutions to these challenges

DERMS for DSO

- Network Energy Manager
 Local flexibility market
 DSO situation awareness
 TSO call for flexibility
- Microgrid Control Unit Local SCADA system over BPL communicatio
- Battery aggregator Scheduling and storage dispatch optimization

			_
	17 1.1 17		
And and a state of the state of	A DECEMBER OF THE OWNER OF	· ·	
			_
dia mana in the local	Store and and the second second		
H H K KOUD			_
and a sector to	and the second se		
and the second states in the s	the second se	and the second se	
Contract 14 14 Longitudina Longitudina		the second se	
		and the second sec	
41			_
			_
	_		
411			- 44
21			

- 12'			
-	21		
a iz'n o	z î		
- 11 1	8 I	**********	-

Value proposition

Solution to provide flexibility to the TSO, use it internally for MV grid constraints and a process to facilitate market integration of DERs. Integrated utilities can valorize their own flexibility (heat grids, water grids, ...).

Classification du document □Confidentiel □Restreint □Interne ✓ Public

STRASBOURG ELECTRICITE RESEAUX

VERS UNE EXPLOITATION OPTIMALE DES RÉSEAUX DE DISTRIBUTION

IEEE Power & Energy Society : Soirée des doctorants Introduction de la présentation d'Emmanuelle VANET

Mathieu GABEL, Responsable du centre de conduite de STRASBOURG ELECTRICITE RESEAUX 16/05/2017

DES RÉSEAUX EN MUTATION

2e distributeur en France

Opérateur de réseaux HTB, HTA et BT

- 530 000 clients dans le Bas-Rhin
- 45 postes sources HTB/HTA
- Pointe à 1540 MW

EnR dans les réseaux HTA et BT

Augmentation significative en 10 ans

- 50 MW de production raccordée en 2006
- 100 MW de production raccordée en 2016

De nouveaux challenges à relever

- De nouveaux acteurs
- Des contraintes qui émergent
- Une réglementation qui évolue
- Une complexification de la planification
- Des coûts et des délais pour les raccordements

STRASBOURG

5

VERS UNE EXPLOITATION OPTIMALE DES RESEAUX

La modification des principes classiques

- La fin des réseaux exclusivement amont-aval
- La fin du « fit, connect and forget »

Le développement des possibilités de flexibilité

- Le Dispositif d'Echange d'Informations d'Exploitation est une réalité
- Les expérimentations smart grids « Flexibilité » se multiplient
- Le cadre réglementaire est à compléter

Un objectif : L'exploitation optimale des réseaux

- \rightarrow En temps réel et de manière prévisionnelle
 - Meilleure connaissance des réseaux, de la météo, des consommations, des marges disponibles
 - Capacités dynamiques des lignes, plan de tension dynamique, ...
- → Exploitation des flexibilités du réseau BT par le réseau HTA, une piste explorée par Emmanuelle VANET dans le projet DREAM

6

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids

Emmanuelle Vanet

Defended the 27th September, 2016

Supervisors: Raphaël Caire & Nouredine Hadjsaid Jury: Hans Akkermans, Marc Petit & Abdellatif Miraoui

IEEE Power & Energy Society : Soirée des doctorants 16 mai 2017

UMR CNRS 5269 - Grenoble-INP – Université Grenoble Alpes

From actual networks to Smart Grids

→ How these **flexibility resources** can be **exchanged** on the existing markets ?

European energy markets overview

→ How to coordinate the use of local flexible resources in distribution systems ?

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

The DREAM project

Part I. Creation of a new distributed architecture

- Coordination of local resources and grid components
- Instauration of local market places

Part II. Short-term local risk management and contingency analysis for the DSOs

Part III. Increasing network performance thanks to the available remaining flexibility resources

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

Autonomous coordination of local resources and grid components

Global optimal coordination of local flexible resources

R. Baerenfaenger, E. Drayer, D. Daniluk, B. Otto, E. Vanet, R. Caire, T. Shamsi Abbas and B. Lisanti, "Classifying flexibility types in smart electric distribution grids: a taxonomy," in CIRED Workshop 2016, 2016.

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

Part I. Creation of a new distributed architecture

Part II. Short-term local risk management and contingency analysis for the DSOs

- DSO risk management and contingency analysis
- Distributed provision mechanisms of MV and LV flexibility resources

Part III. Increasing network performance thanks to the available remaining flexibility resources

Short-term local DSO risk management

Why system operators are performing contingency analysis?

Any unexpected unbalance due to weather uncertainties, any failure or maintenance work...

Existing contingency analysis and operational planning methodologies

TDiastsibidiconsystems

Real need of a distributed balancing market

Boxistengnence almassisses for a loperactional for a special s

→ Guird preimformængnienst (FCR + spinning reserves)

-> Lotærlcobexiedliteynsefearuceepacity reserves

FCR : Frequency Containment Reserve

Evaluation of the available capacity

How local flexibility offers could help DSOs for operational planning?

Өну/му Optimal use of local flexibility offers that are remaining after markets gate closure @mv/lv Substation ∇ Load Substation commercial aggregator agent DSO agent G Generator Remotely controllable switch Substation Remotely controllable switch (NO) 0 commercial Substation aggregator agent DSO agent (G . 0 Substation Substation commercial DSO agent aggregator agent Substation G Substation commercial DSO agent aggregator agent G Primary substation Substation Substation commercial Substation Substation DSO agent aggregator agent DSO agent commercial ٢ aggregator agent

Development of optimisation methods

Example on a particular test case

Results comparison on a given test case

How to guarantee the security and the quality of supply at the minimum cost?

Algorithm	Fobj (€)	Execution time (s) *	Number of function evaluations
Heuristic (cost)	4,67	0,65	9
Heuristic (efficiency)	3,51	0,51	7
Branch-and-cut	2,85	4,67	46
Exhaustive	2,85	1438,29	65536

* Run on a Intel[®] computer Core[™]2 Duo CPU E8400 @3.00GHz with 4,00 Go of RAM

Algorithm	Advantages	Drawbacks
Heuristic methods	 Few computational requirements Straightforward Always converging to a solution 	 Greedy algorithm Global optimal solution not guaranteed
Branch- and-cut method	 Guaranteed convergence to the global optimal solution 	 More computational requirements Need of an embedded branch-and- cut solver Commercialized for industrialization
Exhaustive method	 Guaranteed convergence to the global optimal solution 	• High computational requirements

Short-term local DSO risk management

Contributions

- Instauration of a distributed mechanism for short-term local DSO risk management
- Development of several methods with different computational requirements

- Use of local MV flexibility resources that have a real impact on the potential constraints
- Creation of a mechanism to consider LV downstream networks and their inherent flexibility resources for MV level operation
 - E. Vanet, G. Lebel, et Al., "LV4MV : a concept for optimal power flow management in distribution grids, using DER flexibility," in CIRED 23rd International Conference on Electricity Distribution, 2015.
 - E. Vanet, S. Toure, N. Kechagia, R. Caire, and N. Hadjsaid, "Sensitivity analysis of local flexibilities for voltage regulation in unbalanced LV distribution system," in 2015 IEEE Eindhoven PowerTech, 2015.
 - E. Vanet, G. Lebel, et Al., "Flexibility activation optimization for constraints management in distribution grids, using DER flexibility through LV4MV," in CIRED Workshop - Helsinki 14-15 June 2016, 2016.

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

Part III. Increasing network performance thanks to the available remaining flexibility resources

Part II. Short-term local risk management and contingency

- Minimisation of the network losses •
- Addition of flexibility procurement cost •

analysis for the DSOs

Increasing network performance

French **technical losses** estimations (2015)

- Transmission : around 10 TWh
- Distribution : around 23 TWh

Existing methodologies to improve technical losses reduction

Different mathematical approaches...

...and different considered flexibility resources

→ MV flexible grid components OLTC transformers Capacitor banks Reconfiguration

→ Flexibility from MV end users DGs reactive power output control DR and DGs active power management

Discrete, binary and continuous decision variables

- MINLP problem
- NP hard

Problem formulation (Branch Flow model)

Addition of the flexibility procurement cost G2ELab

Addition of the flexibility procurement cost

G2ELab Energie Gran Parente

Pareto curve for a particular test case

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

Increasing network performance

Contributions

 Distributed advanced function for increasing network performance while considering the available flexibility resources

• **Optimality** of the solution found **guaranteed**

- Any procurement of flexibility resources should be associated with a cost for the DSO
 - \rightarrow Addition of a constraint on the total cost of DR activated offers
 - → Give a clear vision on the Pareto front/ Trade-off between losses and flexibility activation on a long time frame

- New methodologies for short-term DSO operational planning
 - \rightarrow **Compatible** with the existing market processes Several methods requiring different mathematical needs

- **Implementation** of these tools on a real industrial case
 - \rightarrow Reduce the risk of not respecting dispatching orders in ancillary services market by using flexibility resources
 - \rightarrow Reduce grid reinforcements during airport load growth

Conclusions

New **dynamic coordination and control** infrastructure to consider the optimal part of the MV network with respect to its current operational needs

- New methodologies for **local constraints management** and **optimal** • network efficiency improvement
 - \rightarrow Guaranteed optimality conservation
 - \rightarrow Multi-objective methodology

Distributed intelligence and heterarchical approach of distributed balancing markets in Smart Grids – Emmanuelle Vanet

Further works

- Extend these methodologies on a more adequate time frame
 - \rightarrow Rebound and report effects
 - \rightarrow Availability of the flexibility offers
 - → Dynamic constraints on flexibility resources

✓ B. Swaminathan, "Optimal Operational Planning of Distribution Networks", thèse en cours au g2elab, 2017.

- Determine the most problematic flexibility offers
 → One potential solution is the use of the fuzzy logic
- Assess the potential end users **flexibility acquisition**
 - → Real challenge
 - \rightarrow Uncertainties on their availability

✓ J. Sayritupac, R. Caire, E. Vanet, C. Larios, "Behaviour Analysis of an Operational Planning Tool facing Activation Probabilities, for Near Optimal Operation of Smart Grids" accepted in CIRED 2017 Glasgow, 2017.

- Imagine other types of **local flexibility exchanges**
 - \rightarrow OTC contracts instead of local market places
 - \rightarrow New transactions schemes with blockchain
 - \rightarrow Impact on the DSO business model

Thank you for your attention !

Romain Gigault GE Grid Solutions

Mathieu GABEL Strasbourg Electricité Réseaux

Emmanuelle Vanet G2Elab

16/06/2017

Interoperability between Modular Multilevel Converters connected to a Multi-Terminal DC grid

Student: Julián Freytes

Director: Xavier Guillaud (L2EP - Centrale Lille) Co-supervisors: Frederic Colas, François Gruson (L2EP – ENSAM)

Industrial supervisors: Olivier Despouys, Samuel Nguefeu, Pierre Rault, Hani Saad (RTE)

Soirée des doctorants – IEEE France

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

Context – Why MTDC grids?

Offshore wind power development

Context – Why MTDC grids?

- All the connections are "Point-topoint" schemes (<u>HVDC Link</u>)
- In Europe there is actually no multiterminal DC (MTDC) system in operation
- Different technologies are used (LCC and <u>VSC</u>)
- Single vendor schemes !

• Context – Why MTDC grids?

- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

Modular Multilevel Converter - Overview

7/36

HVDC system description – **HVDC** Link

INELFE project – Connection between *France & Spain* – Vendor: Siemens

H. Saad, Modélisation et simulation d'un liason HVDC de type VSC-MMC, 2015

8/36
HVDC system description – Radial MTDC grid

• More than 1:

Droop control: Analog to the AC frequency controller of the synchronous machines.

9/36

HVDC system description – Meshed MTDC grid

Challenges:

- Fast fault clearance?
- Grid protection coordination?
- Communication requirements?
- Voltage level?

Real MTDC Projects in China

11/36

Zhoushan (5 terminals) Nan'ao (3 terminals) **To Shanghai Luchao Station** ...Multivendor scheme 2×30 MW/±50 kV Yangshan Sijiao 本 32.3km +160kV DC Line 39km Qushan 17km 110kV XI 110kV 46km MMC MMC 2 Daishan Sucheng Station Jinniu Station Wind Farm AC network of Zhoushan 200MW 150MW receiving end 110kV MMC 3 110 kV Ningbo 220 kV Qing' ao Station ±200 kV VSC-HVDC Wind Farm Grid ±50 kV LCC-HVDC **50MW** Windfarm Main vendor **Constructor 1 Constructor 2 Constructor 3**

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

On dynamics of DC power systems: Challenges

VERY FAST DYNAMICS !!!!

Modeling in AC systems

Modeling in AC systems

The decoupling between the electrical and mechanical phenomena* in classical AC systems allows to use simple models and still be able to study large grids

* ...also the experience !

Modeling in DC systems

Modeling in DC systems

Ongoing works are trying to model the components of the DC systems* for different studies:

Hard task since the fast dynamics force to consider detailed models

* ...with uncertainties due to the lack of experience !

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

19/36

- Physical knowledge of the system
- Interoperability studies were performed
- Standards were created
- Technology evolving not so fast
- More than 100 years of experience worldwide !

Let us **assume** that we **DO** have **representative models** of the DC components ...

What about the differences between the vendors? INTEROPERABILITY (IOP)

 What are the conditions to ensure <u>maximum interoperability</u> for multivendor <u>MTDC-MMC</u> based grids?

BestPaths: **Be**yond **St**ate-of-the-art technologies for **p**ower **A**C corridors and Multi-**T**erminal **H**VDC **s**ystems

Objective: Highlight the conditions necessary to ensure maximum interoperability, for all parties involved at different project stages ,for a wide range of HVDC arrangements based on recent VSC technology (in particular: MMC or Modular Multi-level Converters).

European

SEVENTH FRAME

23/36

Definition of IOP in the BestPaths project

In BestPaths projects it was evaluated by simulation different scenarios to study the interoperability

DO we have **models** of the VSC?

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

How to study the IOP ?

How to study the IOP?

* Not only universities: TSOs, Research Centres and even vendors....

Example of results

33/36

Power reversal

- Context Why MTDC grids?
- HVDC system description
- On dynamics of DC power systems: Challenges
- Multivendor schemes: Interoperability
- How to study the IOP ?
- Conclusions

Conclusions and perspectives

- The Modular Multilevel Converter is the state-of-the-art on HVDC systems
 - Already used in Point-to-point schemes
 - ...and Multi-Terminal DC grids
- Modeling and control of MMCs presents a real challenge
 - Many models and control strategies are available in the literature
 - Different studies need suitable models
- Power electronics converters brings new functionalities to the existent grids
 - However, the converter by itself presents no "intelligence"
 - \rightarrow All the functions are governed by the control systems
 - \rightarrow Manufacturers surely have different control strategies
- Scientific approaches allow to quantify the impact of different strategies

Among many uncertainties, one thing is for sure...

Working together towards the upcoming HVDC systems

Merci pour votre attention

GRID INTEGRATED VEHICLES: TECHNICAL ISSUES, BUSINESS MODELS AND REGULATORY FRAMEWORK FOR EV FLEETS

Paul CODANI & Damien-Pierre SAINFLOU

Soirée IEEE doctorants

Tour RTE

May 16th, 2016

- **1.** Introduction
- 2. PhD work: modeling & simulations
- **3.** PhD work: Experimentation
- 4. Conclusion

1. Introduction

2. PhD work: modeling & simulations

- **3.** PhD work: Experimentation
- 4. Conclusion

- EV penetration rate is increasing substantially
 - Technology improvements
 - Air pollution

- Critical evolutions in the power system sector
 - Renewable Energy Sources
 - Demand Side Management

\rightarrow EVs could induce additional stress on the grids

→ Smart Grid integration of Electric Vehicles

BENEFITS

Fonction groupe électrogène Alimentation objets nomades Alimentation Back- up maison

- Différents niveaux de service disponibles en fonction du niveau d'intégration dans les réseaux
- Complexité et gains croissants avec le niveau d'intégration

TECHNOLOGICAL IMPACTS ON VEHICLES

STEP	Schéma	Brique(s) techno(s) et normes
Smart charge	ISO/ICE 15118 IEC 61851	IEC 61851
		ISO IEC 15118 Ed1
V2G with off-board charger	ISO/ICE 15118 CHADEMO V2G	Chademo (standard japonais charge rapide)
		CCS (standard EU charge rapide) + ISO IEC 15118 Ed2
V2G with on-board charger	Battery ISO/ICE 15118	OBC bidirectionnel + ISO IEC 15118 Ed2 (système {borne + VE} moins cher que STEP 1)

1. Introduction

2. PhD work: modeling & simulations

- A. Introduction
- B. Analysis of TSO rules
- C. Simulation Model
- D. Results and discussions
- E. Conclusion
- **3.** PhD work: Experimentation
- **4**. Conclusion
2. PhD work: modeling & simulations

A. Introduction

- B. Analysis of TSO rules
- C. Simulation Model
- D. Results and discussions
- E. Conclusion
- **3.** PhD work: Experimentation
- **4.** Conclusion

INTRODUCTION: FREQUENCY CONTROL

- The frequency is a common value within an interconnected network
- The grid frequency permanently fluctuates around its nominal value
- TSOs implement 3 control levels to control frequency deviations
- Controlling frequency $\leftarrow \rightarrow$ make sure that P = C at every moment
 - Today, traditional power plants increase / decrease their production level

2. PhD work: modeling & simulations

- A. Introduction
- B. Analysis of TSO rules
- C. Simulation Model
- D. Results and discussions
- E. Conclusion
- **3.** PhD work: Experimentation
- **4.** Conclusion

TSOs UNDER STUDY

- The frequency control rules of six representative TSOs were studied
- 18 important rules for EV fleets were identified
- The most important ones were gathered into two modules

MOST IMPORTANT RULES IDENTIFIED

- The rules towards aggregation of EVs
 - Aggregators have fundamental roles in V2G architectures
 - The three criteria of this module are:
 - · Minimum rated power to be included in the market
 - · Possibility to aggregate units across various DSO technical zones
 - · Requirements to disaggregate the contribution of each EV
- The rules for the payment of grid services
 - V2G → potential earnings for EV owners
 - The three criteria of this module are:
 - · Nature of the payment scheme (regulated, contract-based or market-based)
 - Incompleteness of the payment scheme
 - Extra bonus for intense flexibility

➔ Identification of key sets of rules...

- → …could be used as a tool to survey other TSOs
- → Definition of a regulatory framework for the simulations

- We focus on Frequency Containment Reserves (or primary control)
- Symmetrical market
- Hourly auction market
- ENTSO-E* safety rules
- Energinet.dk prices

Fleet's reponse to frequency fluctuations

An optimistic regulatory framework for simulations was chosen based on the regulatory analysis
 Need for a simulation model to address business models

*European Network of Transmission System Operators for Electricity

2. PhD work: modeling & simulations

- A. Introduction
- B. Analysis of TSO rules

C. Simulation Model

- D. Results and discussions
- E. Conclusion
- **3.** PhD work: Experimentation
- **4.** Conclusion

FLEET MODELING

- Fleet of commuters:
 - Data used: CROME project results; internal PSA data; ministerial reports
 - Dynamic and stochastic fleet model
 - Bidirectional or unidirectional capabilities
 - Only commuting trips are taken into account
- We assume that all EVs have an EVSE at home
- Breakdown of EVSE power values based on current French values

Scenario	EVSE penetration rate at workplaces	Charging Power	Primary EVSE	Secondary EVSE
Scenario 1	0%	Slow A – 3kW	95%	35%
Scenario 2	25%	Slow B – 7kW	5%	34%
Scenario 3	50%	Intermediate – 22kW	0%	29%
Scenario 4	75%	Fast – 43kW	0%	2%

$$P_{reg} = \begin{cases} -\frac{f - f_0}{f_{max} - f_0} P_{bid}, |f - f_0| < 0.2Hz\\ P_{bid}, & |f - f_0| > 0.2Hz \end{cases}$$

- Dispatch algorithm inspired from the algorithm developed at the University of Delaware
 - Proved efficient in real life demos
 - Proved scalable
- Drivers are assumed to communicate their driving needs

Operating principle of the dispatch algorithm

INDIVIDUAL EV STRATEGIES

Decentralized solution: each EV is responsible for calculating its available power for regulation
 All driving needs are always fulfilled

2. PhD work: modeling & simulations

- A. Introduction
- B. Analysis of TSO rules
- C. Simulation Model
- D. Results and discussions
- E. Conclusion
- **3.** PhD work: Experimentation
- **4.** Conclusion

- Earnings per EV and per year were calculated for different EVSE power levels
- Individual earnings were averaged for all the EVs of the fleet
 - Depending on the breakdown of EVSE power levels considered
 - Assuming an equal remuneration for all EVs

Earnings per EV and per year

Average power provided by a fleet of 200,000 EVs

Scenario (% EVSE at work)	Bidirectio EVs	 Bidirectional EVs: Possible business model for EV fleets but market could be saturated quickly 		Unidirectional EVs
Scenario 1 (0%)	149€			102 MW
Scenario 2 (25%)	251€	28€ Scenario 2 (25%) 50	1 MW	109 MW
Scenario 3 (50%)	353€	 Unidirectional EVs Current market design 	: MW	116 MW
Scenario 4 (75%)	456€	\rightarrow remuneration very low \rightarrow New market design	: MW	123 MW
			primary	reserve: ~600MW

- Asymmetrical market design
 - Considering the creation of two separated sub markets: UP and DOWN markets
- Recommended by ENTSOE, already existing in some areas

- First P_{bid} quartile: 243kW
- Unidirectional EV fleets perform much better under asymmetrical market design TSOs should procure UP and DOWN products separately

SENSITIVITY ANALYSIS: MARKET CLEARING PERIOD

- We have seen ranges from 1h to 1week for market clearing periods
- Comparison between 1h and 4h market clearing periods for the asymmetrical unidirectional use case

Fleet response for 1h market clearing period

Fleet response for 4h market clearing period

Switching from 4h to 1h market clearing period represents a great opportunity for EV fleets
 TSOs should implement market clearing periods as short as possible

2. PhD work: modeling & simulations

- A. Introduction
- B. Analysis of TSO rules
- C. Simulation Model
- D. Results and discussions

E. Conclusion

- **3.** PhD work: Experimentation
- **4**. Conclusion

- EV fleets could expect significant earnings by participating to frequency control...
- ...provided that the regulatory framework / market rules are adapted
 - the rules towards aggregation of EVs should be enhanced
 - the payment scheme of grid services should be properly addressed
- Coupling between simulation model and regulatory analysis showed that:
 - UP and DOWN products should be procured through separate markets
 - the market clearing period should be kept as short as possible
- ENTSO-E network codes are paving the way towards a suitable regulatory framework
- Bidirectional capabilities significantly increase the EV expected revenues
- From the TSO perspective:
 - EV fleets = potential cost effective reserve providing units
 - New sources of flexibility
- Frequency control reserves have limited sizes \rightarrow other grid services should be investigated

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion

4. Conclusion

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion

4. Conclusion

THE NIKOLA PROJECT

- Nikola is a Danish research and demonstration project with a focus on the synergies between the electric vehicle (EV) and the power system. Research
- 3-year project
- ۲ 2M€ budget (Danish public fund)

Only project in Europe implementing frequency regulation services with series vehicles

demonstration

EURISCO

seas nve

NOVVE

WP1: system-wide services

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion

4. Conclusion

BERLINGO ELECTRIC CHARACTERISTICS

- Light duty vehicle
 - Battery: 22,5kWh
 - Charging in mode 2/3
 - Charging up to 3,7kW

 Possibility to control the charging rate of the vehicle by means of the IEC 61851-1 standard

→ From 6A to 16A, i.e. from 1,4kW to 3,7kW

TEST PROCEDURE

- Co-development of the test procedure with DTU
- Physical Simulation of participation in the Frequency-controlled Normal operation Reserves (FNR)
 - Linear response to frequency deviations between -100mHz and +100mHz

Computer

DTU Grid

→ Experimentation using the exact same strategies as in the simulation model for unidirectional EVs

Request and Charging currents from the Berlingo (over 15 minutes)

- Accuracy and response time very good
- Protocol not initially designed for smart charging
- → Technical abilities of a unidirectional vehicle demonstrated
- → Validation of simulation model hypothesis

Experimental results for the 7 consecutive hours of test

Unidirectional EV strategy used in the simulations

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion
- **4.** Conclusion

PEUGEOT ION CHARACTERISTICS

- Passenger vehicle:
 - Battery capacity: 16kWh
 - AC charging up to 3,7kW in AC mode 2/3
 - DC bidirectional charging ± 50kW (Chademo protocol)
- The Chademo protocol enables bidirectional power exchanges based on CAN communication
- ENDESA bidirectional charging stations are available

→ Bidirectional capabilities, from -10 to +10kW

 Controllability by means of the Chademo protocol

TEST PROCEDURE

- Co-development of the test procedure with DTU
 - Participation in the FNR mechanism

→ Experimentation using the exact same strategies as in the simulation model for bidirectional EVs

RESULTS

- Response time < 5s (for the whole chain)
- Very good accuracy
- → Technical abilities of a bidirectional vehicle demonstrated
- → Validation of simulation model hypothesis

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion

4. Conclusion

- Experimental results of two different PSA Groupe series vehicles, using different HW & SW solutions
 - A unidirectional Berlingo Electric
 - A bidirectional Peugeot iOn
- Simulation model hypothesis were tested and validated
- Vehicles have been proved efficient frequency control providing units
 - Accuracy very satisfactory
 - Response time <5s for the whole IT chain

2. PhD work: modeling & simulations

3. PhD work: Experimentation

- A. The NIKOLA Project
- B. Experiments with the Citroën Berlingo Electric
- C. Experiments with the Peugeot iOn
- D. Conclusion

4. Conclusion

- Evaluation of potential business models
- Impacts of the regulatory framework on these potential earnings
- Experimentations carried out in order to validate simulation model hypothesis
 - → Technical abilities of series EV were evaluated and validated
 - Unidirectional and bidirectional vehicles
- Next steps:
 - Medium scale demonstration project involving real life customers: GridMotion project
 - Press release
 - B2C Movie
 - B2B Movie

RESEARCH PERSPECTIVES

- Improvements of simulation models:
 - More complex EV fleet modelling
 - More sensitivity analysis
 - Improvement of algorithms

- Analysis of DSO flexibility markets
 - Why there are none of them
 - What should be done to have DSOs implement them
 - Economic value

- Analysis of other TSO markets
 - Balancing mechanisms
 - Capacity and energy markets
- Analysis of islanded systems

- Analysis of other regions of the world
 - China
 - Africa
 - ...

International journals with peer-review process:

- Apostolaki, E., **Codani, P**., & Kempton, W. (2017). Measurement of Power Loss During Electric Vehicle Charging and Discharging. *Energy*.
- Codani, P., Cassin, L., Petit, M., Perez, Y., (2016). Increasing power system reserve capacities by changing the reserve market design: the case of Electric Vehicle fleets. *IEEE Transaction on Power Systems*. Submitted for publication
- **Codani, P.**, Perez, Y., Petit, M., (2016). Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs. *Energy* 113.
- Eid, C., **Codani, P**., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from Distributed Energy Resources: A review for incentives, aggregation and market design. *Renewable and Sustainable Energy Reviews*. 64
- **Codani, P**., Le-Portz, P.-L., Claverie, P., Perez, Y., & Petit, M. (2015). Coupling local renewable energy production with electric vehicle charging : a survey of the French case. *International Journal of Automotive Technology and Management*, *16*(1)
- **Codani, P.**, Petit, M., & Perez, Y. (2014). Participation of an Electric Vehicle fleet to primary frequency control in France. *International Journal of Electric and Hybrid Vehicles, 7*(2).

• Book chapter:

• Codani, P., Perez, Y., & Petit, M. (2015). Electric Vehicle as a mobile storage device. In J. Yan (Ed.), Handbook of Clean Energy Systems. Wiley.

International conferences with peer-review process:

- Dang, X., Petit, M., & Codani, P. (2015). Transformer Operating conditions under introduction of PV and EVs in an Eco-district. In 2015 IEEE Power and Energy Society General Meeting. Denver
- Dang, X.-L., **Codani, P**., & Petit, M. (2015). Energy optimization in an Eco-district with Electric Vehicles smart charging. In *IEEE Powertech Eindhoven*. Eindhoven.
- Eid, C., **Codani, P**., Chen, Y., Perez, P., Hakvoort, R. (2015). Aggregation of Demand Side flexibility in a Smart Grid: A review for European Market Design. In *2015 12th International Conference on the European Energy Market (EEM)*, IEEE.
- Knezovic, K., **Codani, P**., Perez, Y., & Marinelli, M. (2015). Distribution Grid Services and Flexibility Provision by Electric Vehicles: a Review of Options. In *University Power Engineering Conference (UPEC)*. Staffordshire (UK).
- Codani, P., Petit, M., & Perez, Y. (2014). Diversity of transmission system operators for Grid Integrated Vehicles. In 2014 10th International Conference on the European Energy Market (EEM), IEEE.
- Position Paper (French Standardization Committee (AFNOR) document):
 - Caillat, O., Chevreau, M., Codani, P., Colet, F., Demay, I., Dobrowolski, B., Dumouchel, D., Dupuy, P., Mazzoni, S., Neau, E., and Ricaud, C. (2016). Feuille de route pour une intégration des véhicules rechargeables dans les réseaux électriques. *Position Paper for the French Association for Standardization (AFNOR).*
Thank you!

Annexes

- The global PEV stock is increasing quickly (+70% from 2014 to 2015)
- However, market shares remain low because of:
 - Limited driving ranges
 - Lack of charging infrastructure
 - High prices

Source: IEA Global EV Outlook 2016

Source: IEA Global EV Outlook 2016

- Battery costs are decreasing drastically
- → Future PEVs will have larger batteries
- → Driving ranges will increase substantially
- Barriers to EV adoptions might be overcome; EV stock expected to continue to increase rapidly

SMART CHARGING / DISCHARGING: USE CASES

	Use Case	Expected benefits (customer)	Challenges	Schema
	Vehicle-to-Load	Additional servicesSecurity of supply	Bidirectional power flowsSafety aspects	Î
	Vehicle-to-Home	 Electricity bill reduction: -10 / -15% 	Need for an EMSPotentially, bidirectional power	a
	 Various available new Benefits increase with → V2G = most p Complexity also increase 	services depending on the level the level of grid integration promising solutions ases with the level of grid integrat	of grid integration ion	
		possible		
↓ ++	Vehicle-to-Grid	 Remuneration: up to \$1500/year 	 Regulatory issues TSO rules not always adapted No DSO market Communication requirements Aggregator required 	Í

V2G: WHICH ELECTRICITY MARKETS?

- Electricity markets address from years ahead to real time operations
- Forward markets
 - Secure investments
 - Ensure trading of large amount of electricity
- Reserves
 - Ensure balance on short time scale
- Characteristics of EV fleets
 - Good reactivity
 - Availability
 - Little amount of energy

• In the V2G use case, the most interesting grid services are those addressing real time balance

LIST OF STAKEHOLDERS

- Diversity of actors \rightarrow complex value chain
- IT, automotive and power system industries are involved

POWER EFFICIENCY

- Round-trip efficiency might affect business models
- Charging system chain:
 - Charging station
 - Cables
 - Power Electronic Unit (PEU)
 - Battery
- Battery losses:
 - Marginal
- PEU losses
 - Depend on the operating conditions of the PEU
 - If operating far from its rating power, losses
 might be important

Power converter efficiency curve Source: Apostolaki et. al (2016)

- The main losses occur in the power electronic unit
- Smart charging / discharging strategies should be designed with PEU losses in mind (and vice versa)

BATTERY DEGRADATION

- Crucial topic considering battery prices
- Main factors:
 - Temperature
 - SOC variation
 - Charging rate
 - Average operating SOC
- Large literature, but very few experimental results from real life tests

Peterson et al. (2010a)

- Unidirectional power flows:
 - Should not accelerate battery aging compared with a plug-and-charge situation
- Bidirectional power flows:
 - Much dependent on the cycles targeted
 - \rightarrow Additional degradation should not be too substantial

Criterion	RTE	РЈМ	ERCOT	Energinet.dk	CAISO
Telemetry VS financial aggre- gation:	Telemetry	Telemetry	Financial	Telemetry	Financial
Ability to aggregate across various EDCs:	Yes	No	No	Yes	No
Framework and metering for retail producer:	No	Yes	No	No	No
Frequency control reserves dispatching method:	Historical load share	<i>Prim.</i> : N/A <i>Sec.</i> : Open market	<i>Prim.</i> : N/A <i>Sec.</i> : Historical load share + bilateral trade	Open markets	<i>Prim.</i> : N/A <i>Sec.</i> : Open markets
Remuneration:	Prim.: \$11.4/MW- 30min Sec.: \$11.4/MW- 30min + \$13.2/MWh	Prim.: not remuner- ated Sec.: ±\$37/MW-h ¹	<i>RR</i> : \$17/MW-h ² <i>Sec. UP</i> : \$17/MW-h ² <i>Sec. DN</i> : \$6/MW-h ²	DK1: Prim. UP: \$45/MW-h ² Prim. DN: \$4.7/MW-h ² DK2: FNR: \$24.5/MW-h ³ FDR: \$13/MW-h ³	Prim.: not remu- nerated Sec. UP: \$6.2 ² Sec. DN: \$4.6 ²
References:	[12]	[13], [14]	[15]–[18]	[19]	[20]

TABLE I CHARACTERISTICS OF THE TSOS FOR ENABLING CRITERIA

DK1: Western Denmark; *DK2*: Eastern Denmark; *DN*: DOWN; *FDR*: Frequency controlled Disturbance Reserve; *FNR*: Frequency controlled Normal operation Reserve; *N/A*: Not Applicable; *Prim*.: Primary control market; *RR*: Responsive reserves; *Sec.*: secondary control market Average clearing prices from: $^{1}10/01/12$ to 09/04/13; $^{2}08/01/11$ to 08/31/13; $^{3}10/06/12$ to 08/31/13. Conversion rate: $1 \in =1.35$

TABLE II CHARACTERISTICS OF THE TSOS FOR PROFITABLE CRITERIA

Criterion	RTE	PJM	ERCOT	Energinet.dk	CAISO
Net metering:	Not Applicable	In Delaware, yes Other states: no	No	No	Yes
Value fast-ramping resources:	No	Yes	No	No	Yes
Type compliance for qual. tests:	Not Indicated	No	Not Indicated	Not Indicated	Not Indicated
Ongoing Validation:	Record inspection	Record inspection	Record inspection	Frequency distur- bance simulation	Not Indicated
References:	[12]	[13], [14]	[15]–[18]	[19]	[22], [23]

Criterion	RTE	РЈМ	ERCOT	Energinet.dk	CAISO
Minimum bidding amount:	N/A	Prim.: N/A Sec.: 0.1MW	<i>Prim.</i> : N/A <i>Sec.</i> : 0.1MW	0.3MW	Prim.: N/A Sec.: 0.5MW
Granularity:	1MW	<i>Prim.</i> : N/A <i>Sec.</i> : 0.1MW	NI	0.1MW	<i>Prim</i> .: N/A <i>Sec</i> .: 0.1MW
POP modification frequency:	NI	2s	1s	5 min	NI
Droop modification frequency:	30 days	N/A	N/A	One hour	N/A
Frequency meter location:	NI	N/A	N/A	NI	N/A
Frequency dead-band:	10mHz	N/A	N/A	DK1: 10mHz DK2: <i>FNR</i> : 0mHz <i>FDR</i> : 100mHz	N/A
Energy neutral signal:	No	Yes	No	No	No
Last moment to adjust bid capacity:	N/A	Hour-1	Hour-1	Day ahead at 7:00PM	Hour-1
Symmetrical market:	Yes	Prim.: N/A Sec.: Yes	<i>RR</i> : Yes <i>Sec</i> .: No	DK1: Prim.: No / Sec.: Yes DK2: FNR & FDR: Yes	<i>Prim</i> .: N/A <i>Sec</i> .: No
References:	[12], [25]–[27]	[28], [29]	[16], [30], [31]	[19]	[32]

TABLE III CHARACTERISTICS OF THE TSOS FOR OPERATIONAL CRITERIA

DK1: Western Denmark; DK2: Eastern Denmark; DN: DOWN; FDR: Frequency controlled Disturbance Reserve; FNR: Frequency controlled Normal operation Reserve; N/A: Not Applicable; NI: Not Indicated; Prim.: Primary control market; RR: Responsive reserves; Sec.: secondary control market

MODULE 1: AGGREGATION RULES

- Aggregators have fundamental roles in V2G architectures
- The three criteria of this module are:
 - Minimum rated power to be included in the market
 - Possibility to aggregate units across various DSO technical zones
 - Requirements to disaggregate the contribution of each EV

	Organization			
	Best option	Conservative Option		
R1 : Minimum Size	100 kW	10 MW		
R2 : Interoperability among DSOs	Possible	Impossible		
R3 : Deaggregation	Not requried	Required; each unit should respond separately		

- **1.** V2G \rightarrow A mean to reduce the TCO of EVs
- 2. The three criteria of this module are:
 - A. Nature of the payment scheme (regulated, contract-based or market-based)
 - B. Incompleteness of the payment scheme
 - C. Extra bonus for intense flexibility

	Organization			
Payment scheme rules	Best Option	Conservative Option		
R4 : Nature of the payment	Market based	Regulated		
R5 : Incompleteness of the payment	All AS should be paid	Incomplete payment scheme		
R6 : Extra bonus	Set at the efficient level, or separate market created	Not existing		

TSO	R1	R2	R3	R4	R5	R6
RTE	Х	\checkmark	\checkmark	X	\checkmark	X
PJM	\checkmark	X	\checkmark	\checkmark	X	\checkmark
ERCOT	\checkmark	X	X	\checkmark	X	X
Energinet.dk	~	\checkmark	\checkmark	\checkmark		X
CAISO	~	X	X	\checkmark	X	\checkmark
NGC	Х	\checkmark	\checkmark	~	X	Х
			$\sqrt{:}$ good	~:	SO SO	X: bad

Rule	Ideal TSO	ENTSOE Proposals	
Minimum size	100kW	Not addressed	
Interoperability among DSOs	Possible	Not clearly defined, but TSOs and DSOs should make all en- deavors and cooperate in or- der to ease the participation to Demand Side Response	
Aggregation level	Telemetry	Status of <i>aggregator</i> defined. Telemetry aggregation con- sidered for FCR up to 1.5MW	
Nature of the pay- ment	Market Based	Market Based	
Incompleteness of the payment	All AS should be paid	All AS should be paid	
Extra bonus for flexibility	Set at the efficient level / separate market created	Demand Side Response Very Fast Active Power Response should be implemented	

Table 3.4: Ideal TSO VS ENTSOE guidelines

- We use one month of frequency recordings recorded at CentraleSupélec in March 17th to April 17th 2015
- Thanks to Martin Hennebel

Figure 3.6: Distribution function of the frequency recordings

Table 3.8: Main characteristics of the frequency data set used, and comparison with RTE measurements

	Criteria	Author data set	$RTE \ data \ set$	Difference (%)
	Mean (Hz)	50	50	-0,002
	Std (Hz)	0,02	0,02	0,4
\mathbf{f}	Min (Hz)	49,9	49,9	-0,01
	Max (Hz)	50,1	50,1	0
	P($49,95 < f < 50,05$)	0,97	0,97	-0,22
51	Mean $(Hz.s^{-1})$	9.8E-4	n/a^a	n/a^a
$\mathrm{d}f$	Std $(Hz.s^{-1})$	0.001	n/a^{a}	n/a^{a}
$\overline{\mathrm{d}t}$	$Min (Hz.s^{-1})$	0.09	n/a^a	n/a^{a}
	$Max (Hz.s^{-1})$	-0.09	n/a^a	n/a^a

 $^{\rm a}{\rm n/a:}$ not applicable, as RTE data set has a 10 second time stamp

1. EVSE charging power repartition depending on the charging location :

Charging Power	Primary EVSE	Secondary EVSE
Slow A – 3kW	95%	35%
Slow B – 7kW	5%	34%
Intermediate – 22kW	0%	29%
Fast – 43kW	0%	2%

- Simulation parameters
 - Regulatory framework as explained previously
 - Fleet modelling
 - 100 simulations are run following the Monte Carlo approach for 100 EVs
 - five continuous hourly market prices are selected randomly from the data set
- Ô

- Same for the frequency values
- Winter and summer seasons considered

 $P_{home} = 3kW, P_{work} = 0kW$

Simulation results for a single bidirectional capable EV over 5 working days, with $P_{home} = 3kW$ and $P_{work} = 0kW$

- Implementation working
- Extreme conditions were tested; algorithm validation

SOC

• Earnings per EV per year

EVSE Pow	Earnings per	
Home EVSE	Work EVSE	EV and per Year (€)
3	0	138
3	3	239
3	7	389
3	22	1,036
7	0	365
7	3	418
7	7	600
7	22	1,114

Average power provided by a fleet of 200,000 EVs:

Scenario (% EVSE at work)	P _{min} (MW)	P _{moy} (MW)
Scenario 1 (0%)	1,6	311
Scenario 2 (25%)	6,5	501
Scenario 3 (50%)	11,4	692
Scenario 4 (75%)	16,2	882

French primary reserve: ~600MW

- Potentially substantial earnings
- Business model may be considered
- Market could be saturated quickly

• Earnings per EV per year

EVSE Power Level (kW)		Earnings per
Home EVSE	Work EVSE	EV and per Year (€)
3	0	26
3	3	42
3	7	29
3	22	27
7	0	26
7	3	27
7	7	28
7	22	40

• Average power provided by a fleet of 200,000 EVs:

Scenario (% EVSE at work)	Pmin (MW)	Pmax (MW)
Scenario 1 (0%)	0	102
Scenario 2 (25%)	0	109
Scenario 3 (50%)	0	116
Scenario 4 (75%)	0	123

- Current market design
 - \rightarrow remuneration very low for unidirectional vehicles
- \rightarrow New market design

EV DECISION PROCESS FOR ASYMMETRICAL MARKET DESIGN

Probability that the power bid P bid be superior to a certain value, for two different market designs

Probability that the power bid P_{bid} be superior to a certain value for two different market clearing periods Asymmetrical markets

	Parameter			
Fleet	Average speed (km/h)	Trip dis- tances (km)	Departure times	EVSE charac.
Private Fleet	40	22	8h & 17h30	See Ta- ble 3.6 and Table 3.7, scenario 2
Postal Mail Fleet	10	AM: 50 PM: 30	8h & 14h	22kW avail- able at all times
Airport Fleet	10	6	$8\mathrm{h}~\&~12\mathrm{h}$	3kW, charge overnight
Company fleet	40	commuting trips: 44 working trip: 15	8h & 17h30	100% EVSE at work 50% 3kW; 50% 7kW

Mean values of the characteristics of the different fleets understudy

Fleet	Earnings (\in)
Private Fleet	251
Postal Mail Fleet	2004
Airport Fleet	215
Company Fleet	501

Yearly earnings per vehicle and per fleet

THE NIKOLA PROJECT

May 16th, 2017 IEEE soirée doctorants

RESULTS (1/2)

12:00

14:00

- Survey conducted at the beginning of the PhD (2013 2014)
- Using state of the art regulatory manuals at these dates
- Since then, some evolutions happened, mainly driven by ENTSO-E network codes in Europe
- ENTSO-E network codes were analyzed; they mainly deal with:
 - Contractual aspects
 - Cross-border exchanges and common market
- What is not changed in ENTSO-E network codes
 - Safety relevant and technical aspects
 - Same power-frequency curves
 - · For instance, RTE still refers to UCTE Operation Handbook in its Technical Documents
 - · The documents studied for Energinet.dk back in the days are still valid
 - Some current evolutions are happening
 - The evolutions were screened during in order to identify the main changes
 - The changes are not critical, and would not change the rationale of the analysis conducted here
 - The changes go in the direction of the selected regulatory framework for simulations

ENTSO-E NETWORK CODES

Rule	Ideal TSO	ENTSOE Proposals
Minimum size	$100 \mathrm{kW}$	Not addressed
Interoperability among DSOs	Possible	Not clearly defined, but TSOs and DSOs should make all en- deavors and cooperate in or- der to ease the participation to Demand Side Response
Aggregation level	Telemetry	Status of <i>aggregator</i> defined. Telemetry aggregation con- sidered for FCR up to 1.5MW
Nature of the pay- ment	Market Based	Market Based
Incompleteness of the payment	All AS should be paid	All AS should be paid
Extra bonus for flexibility	Set at the efficient level / separate market created	Demand Side Response Very Fast Active Power Response should be implemented

Table 3.4: Ideal TSO VS ENTSOE guidelines

COST STRUCTURE

Hardware costs:

- Metering equipment
- Bidirectional power electronic unit
 - On board
 - Off board
- Additional electronic breakers
- Software costs:
 - Full IT architecture (very different between V2H and V2G solutions) Should remain not too important
 - Risk management costs
- Opportunity costs
- Compare with traditional reserve providing units ?
- Difficult to evaluate the costs; markets should set the right price
 - Cost of reserve provision probably low by EVs
- Markets should be implemented to identify the real costs of reserve products